The correct option is
A (sinx)x(ln(sinx)+xcotx)given y=(sinx)x
applying ln on both sides we get
lny=xln(sinx)
differentiating both sides wrt x
1ydydx=ddx(xln(sinx))
1ydydx=ln(sinx)+x1sinxcosx
dydx=y(ln(sinx)+xcotx)
∴dydx=(sinx)x(xcotx)+(sinx)xln(sinx)