Here y=log(√x+1√x)2 ⇒y=2log(x+1√x)=2log(x+1)−log x
∴dydx=2x+1−1x ⇒dydx=x−1x(x+1)...(i)
Again differentiating w.r.t. x both sides, we get : d2ydx2=x(x+1)(1−0)−(x−1)(2x+1)x2(x+1)2
x(x+1)2d2ydx2=2x−(x−1)(x+1)x=2−(x−1)x(x+1)×(x+1)2
By (i), we get x(x+1)2d2ydx2=2−dydx×(x+1)2 ∴x(x+1)2y2+(x+1)2y1=2.