If y=log2log2(x), then dydx is equal to
log2elogex
log2exlogx2
log2xloge2
log2exlogex
Explanation for the correct option:
Step 1: Simplify :
Given that, y=log2log2(x).
Using property of logarithmic, logba=logalogb.y=log2loge(x)loge2=logeloge(x)loge2loge2=logelogex-logeloge2loge2[∵logab=loga-logb]
Step 2: Find the dydx:
Now, differentiate y with respect to xwe get:dydx=1loge21logex(1x)-0=log2exlogex[∵1logab=logba]
Hence, option D is correct.