wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

if y=(sin−1x)2+k sin−1x, then (1−x2)d2ydx2−xdydx =2

A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C 2

We have,

y=(sin1x)2+ksin1x

On differentiation this equation with respect to x and we get,

dydx=ddx[(sin1x)2+ksin1x]

dydx=2sin1xddx(sin1x)+kddx(sin1x)

dydx=2sin1x×11x2+k×11x2

dydx=2sin1x+k1x2

Again differentiation and we get,

d2ydx2=1x2ddx(2sin1x+k)(2sin1x+k)ddx(1x2)(1x2)2

d2ydx2=1x2(2×11x2+0)(2sin1x+k)121x2×(02x)1x2

d2ydx2=2+x(2sin1x+k)1x21x2

d2ydx2=21x2+x(2sin1x+k)(1x2)1x2

Then,

(1x2)d2ydx2xdydx

=(1x2)21x2+x(2sin1x+k)(1x2)1x2x(2sin1x+k1x2)

=21x2+x(2sin1x+k)1x2x(2sin1x+k)1x2

=21x2+x(2sin1x+k)x(2sin1x+k)1x2

=21x21x2

=2

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon