if y=(sin−1x)2+k sin−1x, then (1−x2)d2ydx2−xdydx =2
We have,
y=(sin−1x)2+ksin−1x
On differentiation this equation with respect to x and we get,
dydx=ddx[(sin−1x)2+ksin−1x]
dydx=2sin−1xddx(sin−1x)+kddx(sin−1x)
dydx=2sin−1x×1√1−x2+k×1√1−x2
dydx=2sin−1x+k√1−x2
Again differentiation and we get,
d2ydx2=√1−x2ddx(2sin−1x+k)−(2sin−1x+k)ddx(√1−x2)(√1−x2)2
d2ydx2=√1−x2(2×1√1−x2+0)−(2sin−1x+k)12√1−x2×(0−2x)1−x2
d2ydx2=2+x(2sin−1x+k)√1−x21−x2
d2ydx2=2√1−x2+x(2sin−1x+k)(1−x2)√1−x2
Then,
(1−x2)d2ydx2−xdydx
=(1−x2)2√1−x2+x(2sin−1x+k)(1−x2)√1−x2−x(2sin−1x+k√1−x2)
=2√1−x2+x(2sin−1x+k)√1−x2−x(2sin−1x+k)√1−x2
=2√1−x2+x(2sin−1x+k)−x(2sin−1x+k)√1−x2
=2√1−x2√1−x2
=2
Hence, this is the answer.