If y=sin-1x1-x2, then (1-x2)dydxis equal to
x+y
1+xy
1-xy
xy-2
Explanation for the correct option:
y=sin-1x1-x2⇒y1-x2=sin-1x
Differentiating with respect to x both sides:
1-x2dydx+y×121-x2×(-2x)=11-x2∵du·vdx=udvdx+vdudx⇒1-x2dydx-xy1-x2=11-x2⇒1-x2dydx=1+xy1-x2⇒1-x2×1-x2dydx=1+xy⇒1-x2dydx=1+xy
Hence, Option (B) is the correct answer.