If y=sinsinx+cosx, then dydx=
cossinx+cosxcosx-sinx2sinx+cosx
cossinx+cosx2sinx+cosx
cosxsinx+cosxcosx-sinx2sinx-cosx
none of these.
The explanation for the correct option:
The given equation is y=sinsinx+cosx.
Differentiate both sides of the equation with respect to x.
ddxy=ddxsinsinx+cosx⇒dydx=cossinx+cosx·ddxsinx+cosx⇒dydx=cossinx+cosx·12·sinx+cosx12-1·ddxsinx+cosx⇒dydx=cossinx+cosx·12·sinx+cosx-12·cosx-sinx⇒dydx=cossinx+cosxcosx-sinx2sinx+cosx
Therefore, dydx=cossinx+cosxcosx-sinx2sinx+cosx.
Hence, (A) is the correct option.
Evaluate :cos48°-sin42°