If y=√√7+7+√8+2√7−√7, then the value of y will be:
1
√7
8−2√7
√7−1
y=√√7+7+√8+2√7−√7 Here, 8+2√7=7+1+2√7=(√7+1)2 y=√√7+7+√(√7+1)2−√7 y=√√7+7+(√7+1)−√7 y=√2√7+7+1−√7 y=√(√7+1)2−√7 y=(√7+1)−√7 y=1
If 3x2+4xy+2y2+x−8=0 then the value of dydx at (−1,3) is
The distance between the origin and P (3,√5,2) is ___ units.
The value of (7C0+7C1)+(7C1+7C2)+...+(7C6+7C7)