The correct option is A −12
Here, dydt−(t1+t)y=11+t and y(0)=−1
which represents linear differential equation of first order.
IF=e−∫(t1+t)dt=e−∫(t+1+1)1+t=dt
=e−t+log(1+t)
=e−t(1+t)
Required solution is y(IF)=[∫Q⋅(IF)dt]+C
ye−t(1+t)=∫11+te−t(1+t)dt+C
=∫e−tdt+C=e−t+C
At t=0,y=−1
Therefore, −1(1+0)=−e0+C
⇒C=0
Therefore, ye−t(1+t)=−e−t
At t=1
ye−1(1+1)=−e−1
⇒y=−12.