y=tan−111+x+x2+tan−11x2+3x+3+…+ upto n terms
=tan−1(x+1)−x1+x(1+x)+tan−1(x+2)−(x+1)1+(x+1)(x+2)+⋯+ upto n terms
=tan−1(x+1)−tan−1x+tan−1(x+2)−tan−1(x+1)
+⋯+tan−1(x+n)−tan−1(x+(n−1))
=tan−1(x+n)−tan−1x
y′(x)=11+(x+n)2−11+x2
⇒y′(0)=11+n2−1=−n21+n2
⇒y′(−n)=1−11+n2=n21+n2