If y=tan−1(11+x+x2)+tan−1(1x2+3x+3)+tan−1(1x2+5x+7)+−−−+ upto n terms, then y′(0)=
Consider the given expression.
y=tan−1(11+x+x2)+tan−1(1x2+3x+3)+....+n terms
y=tan−1((x+1)−x1+x(x+1))+tan−1((x+2)−(x+1)1+(x+1)(x+2))+....+n terms
We know that,
tan−1A−tan−1B=tan−1(A−B1+AB)
Therefore,
y=tan−1(x+1)−tan−1x+tan−1(x+2)−tan−1(x+1)+.....+tan−1(x+n)−tan−1[x+(n−1)]
y=tan−1(x+n)−tan−1x
Differentiate y with respect to x.
y′=11+(x+n)2−11+x2
Therefore,
y′(0)=11+n2−1
y′(0)=1−1−n21+n2
y′(0)=−n21+n2
Hence, this is the required result.