If y=Tan−1(log(e/x2)logex2)+Tan−1(3+2logx1−6logx) then (dydx)x=2+(dydx)x=3.
y=tan−1⎛⎜ ⎜ ⎜⎝logex2logex2⎞⎟ ⎟ ⎟⎠+tan−1(3+2logx1−6logx)=tan−1(loge−logx2loge+logx2)+tan−1[3+2logx1−3−2logx]=tan−1[1−logx21+logx2]+tan−13+tan−12logx=tan−11−tan−1log(x)2+tan−13+tan−1log(x)2=tan−11+tan−13y=tan−11+tan−13 is constant
So, dydx=0
Answer C