Given, y=(tan−1x)2
Let tan−1x=z
∴x=tanz
On differentiating both sides, we get
dx=sec2zdz
=(1+tan2z)dz
=(1+x2)dz
Now, y=z2
dy=2zdz
=2tan−1xdz
dy=2tan−1x.dx(1+x2)
Hence, dydx=2tan−1x(1+x2)
(1+x2)dydx=2tan−1x
(1+x2)2(dydx)2=4(tan−1x)2
(1+x2)(dydx)2−4y=0
Differentiating both sides with respect to x,
(1+x2)[2dydx]d2ydx2+2(dydx)2(1+x2)2x−−4dydx=0
(1+x2)2d2ydx2+2x(1+x2)dydx−2=0