wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=(tan1x)2, show that (1+x2)2d2ydx2+2x(1+x2)dydx2=0

Open in App
Solution

Given, y=(tan1x)2
Let tan1x=z
x=tanz
On differentiating both sides, we get
dx=sec2zdz
=(1+tan2z)dz
=(1+x2)dz
Now, y=z2
dy=2zdz
=2tan1xdz
dy=2tan1x.dx(1+x2)
Hence, dydx=2tan1x(1+x2)
(1+x2)dydx=2tan1x
(1+x2)2(dydx)2=4(tan1x)2
(1+x2)(dydx)24y=0
Differentiating both sides with respect to x,
(1+x2)[2dydx]d2ydx2+2(dydx)2(1+x2)2x4dydx=0
(1+x2)2d2ydx2+2x(1+x2)dydx2=0

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon