Given: y=tanx+secx
Prove that: d2ydx2=cosx(1−sinx)2
y=sinxcosx+1cosx
=1+sinxcosx
differentiate with respect to x
dydx=ddx(1+sinxcosx)
dydx=cosxddx(1+sinx)−(1+sinx)ddxcosxcos2x
=cos2x+sinx+sin2xcos2x=1+sinxcos2x=1+sinx1−sin2x
=1+sinx(1+sinx)(1−sinx)=11−sinx
differentiate with respect to x
ddx(dydx)=ddx(11−sinx)
d2ydx2=(1−sinx)ddx(1)−(1)ddx(1−sinx)(1−sinx)2
=cosx(1−sinx)2
Hence proved.