wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tanx+secx, then prove that d2ydx2=cosx(1sinx)2

Open in App
Solution

Given: y=tanx+secx
Prove that: d2ydx2=cosx(1sinx)2
y=sinxcosx+1cosx
=1+sinxcosx
differentiate with respect to x
dydx=ddx(1+sinxcosx)
dydx=cosxddx(1+sinx)(1+sinx)ddxcosxcos2x
=cos2x+sinx+sin2xcos2x=1+sinxcos2x=1+sinx1sin2x
=1+sinx(1+sinx)(1sinx)=11sinx
differentiate with respect to x
ddx(dydx)=ddx(11sinx)
d2ydx2=(1sinx)ddx(1)(1)ddx(1sinx)(1sinx)2
=cosx(1sinx)2
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon