wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=tan xtan xtan x, then dydx is


Open in App
Solution

Step 1: Express using Logarithm

The given expression is,

y=tan xtan xtan x

Taking the logarithm on both sides we get,

logy=tanxtanxlogtanx ∵logab=bloga

Taking the logarithm again on both sides we get,

loglogy=logtanxtanxlogtanx

⇒loglogy=tanxlogtanx+loglogtanx ∵logab=bloga;logab=loga+logb

Step 2: Differentiate with respect to x

Upon differentiating both sides with respect to x we get,

1logy.1y.dydx=tanx.1tanx.sec2x+logtanx.sec2x+1logtanx.1tanx.sec2x ∵ddxlogx=1x;ddxtanx=sec2x;∵ddxuv=uddxv+vddxu;∵ddxfgx=f'gx.g'x

⇒dydx.1ylogy=sec2x1+logtanx+1tanxlogtanx

⇒ dydx=ylogysec2x1+logtanx+1tanxlogtanx

Hence, the expression for dydx is ylogysec2x1+logtanx+1tanxlogtanx.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Standard Expansions and Standard Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon