Consider the given function
y=x2+1x2+1x2+1x2+....∞
Then,
Suppose that
x2+1x2+1x2+....∞=y and we get,
y=x2+1y
⇒y2=x2y+1.........(1)
⇒x2=y2−1y.......(2)
On differentiating this equation with respect to x and we get,
⇒2ydydx=x2dydx+yddxx2+ddx1
⇒2ydydx−x2dydx=2xy+0
⇒dydx(2y−x2)=2xy
⇒dydx=2xy2y−x2
Put the value of x2 bye equation (2) and we get,
⇒dydx=2xy2y−(y2−1y)
⇒dydx=2xy22y2−(y2−1)
⇒dydx=2xy2y2+1
⇒dydx=2xy2y−x2
Hence, this is the answer.