We have y=x5(cos(lnx)+sin(lnx))
dydx=5x4(cos(lnx)+sin(lnx))+x5(−sin(lnx)x+cos(lnx)x)
⇒xy1=5y+x5(cos(lnx)−sin(lnx))
⇒xy2+y1=5y1+5x4(cos(lnx)−sin(lnx))+x5(−sin(lnx)x−cos(lnx)x)
⇒x2y2+xy1=5xy1+5x5(cos(lnx)−sin(lnx))−x5(sin(lnx)+cos(lnx))
⇒x2y1−4xy1=5(xy1−5y)−y
⇒x2y2−4xy1=5xy1−26y
⇒x2y2−9xy1+26y=0
Comparing with x2y2+axy1+by=0, we get
a=−9 and b=26
Hence, a+b=17