Consider y=xx
⇒logy=logxx by applying log to both sides
⇒logy=xlogx using logam=mloga
⇒1ydydx=x×1x+logx=1+logx by differentiating both sides w.r.t x
⇒dydx=ddx(xx)=y(1+logx)=xx(1+logx)
Consider y=xxx
⇒logy=logxxx by applying log to both sides
⇒logy=xxlogx using logam=mloga
⇒1ydydx=xx×1x+logxddx(xx)=xx−1+logxxx(1+logx) by differentiating both sides w.r.t x
⇒1ydydx=xx−1+xxlogx(1+logx)
⇒dydx=y(xx−1+xxlogx(1+logx))
⇒dydx=xxx(xx−1+xxlogx+xx(logx)2)