z1=2−i,z2=−2+i
Im(1z1¯z2),¯z2=−2−i
Now z1.¯z2=(2−i)(−2−i)=2(−2−i)−i(−2−i)=−4−2i+2i+(i)2=−4−1=−5∴(1z1¯z2)=1−5+0iIm(1z1¯z2)=0
If z1=2−i, z2=−2+i, find (i) Re (z1z2z1) (ii) Im (1z1z2)
Let . Find
(i) , (ii)