If z1=2−i, z2=−2+i, find (i) Re (z1z2z1) (ii) Im (1z1z2)
z1z2z1=z1z2z1×z1z2 (rationalising the denominator)=(z1)2z2z1z2=(2−i)2(−2+i)|z1|2 (∵ z¯z|z|2)=(22+i2−2×2×i)(−2+i)|2−i|2=(4−1−4i)(−2+i)22+(−1)2=(3−4i)(−2+i)4+i=3(−2+i)−4i(−2+i)=−6+3i+8i+45=−2+11i5∴ Re(z1z2z1)=Re(−25+115i)=−25
(ii) 1z1¯¯¯¯z1=1|z1|2=1|2−i|2=122+(−1)2=14+1=15, which is purely real∴ Im(1z1z1)=0