wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If |z1|=2,|z2|=3,|z3|=4 and |2z1+3z2+4z3|=0, then absolute value of 8z2z2+27z3z1+64z1z2 must be equal to

Open in App
Solution

Let z=2z1+3z2+4z3

|z|2=z¯z

|z|2=4|z1|2+9|z2|2+16|z3|2+6(z1¯z2+¯z1z2)+12(z2¯z3+¯z2z3)+8(z1¯z3+¯z1z3)=0 ........{|z|=0 is given}

.............................(i)



Let y=8z2z3+27z3z1+64z1z2=23z2z3+33z3z1+26z1z2

Now, |y|2=y¯y

So, |y|2=26|z2|2|z3|2+36|z3|2|z1|2+212|z1|2|z2|2+2333|z3|2(z1¯z2+¯z1z2)+3326|z1|2(z2¯z3+¯z2z3) +29|z2|2(z1¯z3+¯z1z3)

|y|2=263242+364222+2122232+223242[6(z1¯z2+¯z1z2)+12(z2¯z3+¯z2z3)+8(z1¯z3+¯z1z3)]

|y|2=2632(24+34+44)223242[4|z1|2+9|z2|2+16|z3|2] ........from (i)

Here we used the result from the condition of |z|=0 and used it to evaluate |y|

Substituting values of |z1|,|z2|,|z3|, we get

|y|2=223242[(24+34+44)(4.22+9.32+16.42)]

|y|2=223242[24+34+44243444]=0

|y|=0

|8z2z3+27z3z1+64z1z2|=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon