Let
z=2z1+3z2+4z3
|z|2=z¯z
⟹|z|2=4|z1|2+9|z2|2+16|z3|2+6(z1¯z2+¯z1z2)+12(z2¯z3+¯z2z3)+8(z1¯z3+¯z1z3)=0 ........{|z|=0 is given}
.............................(i)
Let y=8z2z3+27z3z1+64z1z2=23z2z3+33z3z1+26z1z2
Now, |y|2=y¯y
So, |y|2=26|z2|2|z3|2+36|z3|2|z1|2+212|z1|2|z2|2+2333|z3|2(z1¯z2+¯z1z2)+3326|z1|2(z2¯z3+¯z2z3) +29|z2|2(z1¯z3+¯z1z3)
⟹|y|2=263242+364222+2122232+223242[6(z1¯z2+¯z1z2)+12(z2¯z3+¯z2z3)+8(z1¯z3+¯z1z3)]
⟹|y|2=2632(24+34+44)−223242[4|z1|2+9|z2|2+16|z3|2] ........from (i)
Here we used the result from the condition of |z|=0 and used it to evaluate |y|
Substituting values of |z1|,|z2|,|z3|, we get
|y|2=223242[(24+34+44)−(4.22+9.32+16.42)]
⟹|y|2=223242[24+34+44−24−34−44]=0
⟹|y|=0
|8z2z3+27z3z1+64z1z2|=0