We have,
z=1+2i
Since,
z3+7z2−z+16
Put the value of z
Therefore,
=(1+2i)3+(1+2i)2−(1+2i)+16
=1+8i3+6i(1+2i)+1+4i2+4i−1−2i+16
=1−8i+6i+12i2+1−4+2i+15
=1−2i−12−3+2i+15
=1
Hence, the value is 1.
If (z3 + 1z3) - (z2 + 1z2) + (z+1z) - 1 = (z+1z−2α) (z+1z−2β) (z+1z−2γ) Find the value of α.β.γ.