The correct option is
A πLet
z1=x1+iy1,
z2=x2+iy2, z3=x3+iy3, z4=x4+iy4
Given that z1=¯z2 and z3=¯z4
⇒x1+iy1=x2−iy2 and x3+iy3=x4−iy4
Therefore, x1=x2 , y1=−y2 , x3=x4 , y3=−y4
Now, ⇒z4z1=x4+iy4x1+iy1
⇒z4z1=x4+iy4x1+iy1×x1−iy1x1−iy1
⇒z4z1=x1x4+y1y4+i(x1y4−x4y1)x21+y21
Similarly, ⇒z3z2=x2x3+y2y3+i(x2y3−x3y2)x22+y22
But, x1=x2 , y1=−y2 , x3=x4 , y3=−y4
Therefore, ⇒z3z2=x1x4+y1y4+i(−x1y4+x4y1)x21+y21
⇒arg(z4z1)=tan−1(x1y4−x4y1x1x4+y1y4)
⇒arg(z3z2)=tan−1(−x1y4+x4y1x1x4+y1y4)
⇒arg(z3z2)=tan−1(−(x1y4−x4y1)x1x4+y1y4)
We know that tan−1x+tan−1(−x)=π
Therefore, ⇒arg(z4z1)+arg(z3z2)=π