If z1≠−z2 and |z1+z2|=|(1z1)+(1z2)| then
Statement 1: z1z2 is unimodular.
Statement 2: Both z1 and z2 are unimodular.
|z1+z2|=|z1+z2z1z2|⟹|z1+z2|(1−1|z1z2|)=0since|z1+z2|≠0,so,1=1|z1z2|⟹|z1z2|=1
Hence the statement 1 is correct
but statement 2 is not necessary