If |z|=1, then (1+z1+¯z)n+(1+¯z1+z)n is equal to
2cos n(arg(z))
If |z|=1,(1+z1+¯z)n+(1+¯z1+z)n=(z(1+z)z+z¯z)n+(z+z¯zz(1+z))n=(z(1+z)z+|z|2)n+(z+|z|2z(1+2))n=(z(1+z)z+1)n+((z+1)z(1+z))n=zn+1znz=cis(argz) ⇒zn=cis(nargz)1z=cis(−argz) ⇒1zn=cis(−nargz)zn+1zn=2cosn(argz)