The correct options are
A ¯¯¯z1=1z1
B |z1+z2+⋯zn|=∣∣∣1z1+1z2+⋯1zn∣∣∣
C centroid of polygon with 2n vertices z1,z2,⋯zn,1z1,1z2,⋯1zn (need not be in order) lies on real axis.
|z1|=1⇒z1¯¯¯z1=1⇒¯¯¯z1=1z1.
Similarly, ¯¯¯z2=1z2;¯¯¯z3=1z3⋯ and so on.
Now we have,|z1+z2+⋯zn|=|¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1+z2+z3+⋯zn|
⇒|z1+z2+⋯zn|=|¯¯¯z1+¯¯¯z2+¯¯¯z3+⋯¯¯¯zn|
⇒|z1+z2+⋯zn|=∣∣∣1z1+1z2+⋯1zn∣∣∣
Now, centroid of polygon =(z1+z2+z3+⋅zn)+(1z1+1z2+⋯1zn)2n
=(z1+z2+z3+⋅zn)+(¯¯¯z1+¯¯¯z2+¯¯¯z3+⋯¯¯¯zn)2n
=2Re(z1)+2Re(z2)+⋯2Re(zn)2n
Clearly centroid lies on real axis.