wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If z+1/z=2cosθ.
Then prove that (z2n1)/(z2n+1)=|tannθ|.

Open in App
Solution

z+1z=2cosθ
or z22cosθz+1=0
or z=2cosθ±4cos2θ42
=cosθ±isinθ
Taking positive sing, we get
z=cosθ+isinθ
1z=(cosθisinθ)
z2n1z2n+1=zn1znzn+1zn
=(cosθ+isinθ)n(cosθisinθ)n(cosθ+isinθ)n+(cosθisinθ)n
=2isinnθ2cosnθ
=itannθ
Taking negative sign, we get
z2n1z2n+1=2isinnθ2cosnθ=tannθ
z2n1z2n+1=|±itanθ|=tannθ
Ans : 1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon