z+1z=2cosθ
or z2−2cosθz+1=0
or z=2cosθ±√4cos2θ−42
=cosθ±isinθ
Taking positive sing, we get
z=cosθ+isinθ
∴1z=(cosθ−isinθ)
∴z2n−1z2n+1=zn−1znzn+1zn
=(cosθ+isinθ)n−(cosθ−isinθ)n(cosθ+isinθ)n+(cosθ−isinθ)n
=2isinnθ2cosnθ
=itannθ
Taking negative sign, we get
z2n−1z2n+1=−2isinnθ2cosnθ=−tannθ
⟹∣∣∣z2n−1z2n+1∣∣∣=|±itanθ|=tannθ
Ans : 1