The correct option is
A 3(|z1|2+|z2|2+|z3|2)We have,
|A|2+|B|2+|C|2=A¯¯¯¯A+B¯¯¯¯B+C¯¯¯¯C ....(1)
But A¯¯¯¯A=(z1+z2+z3)(¯¯¯¯¯z1+¯¯¯¯¯z2+¯¯¯¯¯z3)
=z1¯¯¯¯¯z1+z2¯¯¯¯¯z2+z3¯¯¯¯¯z3+¯¯¯¯¯z1(z2+z3)+¯¯¯¯¯z2(z3+z1)+¯¯¯¯¯z3(z1+z2)
=|z1|2+|z2|2+|z3|2+¯¯¯¯¯z1(z2+z3)+¯¯¯¯¯z2(z3+z1)+¯¯¯¯¯z3(z1+z2)
B¯¯¯¯B=(z1+z2ω+z3ω2)(¯¯¯¯¯z1+¯¯¯¯¯¯¯¯z2ω+¯¯¯¯¯¯¯¯¯¯z3ω2)
=(z1+z2ω+z3ω2)(¯¯¯¯¯z1+¯¯¯¯¯z2ω2+¯¯¯¯¯¯¯¯¯¯z3ω2)
[∵¯¯¯ω=ω2 and ¯¯¯¯¯¯¯¯¯¯(ω2)=ω]
=z1¯¯¯¯¯z1+z2¯¯¯¯¯z2ω3+z3¯¯¯¯¯z3ω3+¯¯¯¯¯z1(z2ω+z3ω2)+¯¯¯¯¯z2(z3ω4+z1ω2)+¯¯¯¯¯z3(z2ω+z2ω2)
=|z1|2+|z2|2+|z3|2+¯¯¯¯¯z1(z2ω+z3ω2)+¯¯¯¯¯z2(z1ω+z1ω2)+¯¯¯¯¯z3(z1ω+z3ω2) ...(2)
similarly, C¯¯¯¯C=|z1|2+|z2|2+|z3|2+¯¯¯¯¯z1(z2ω2+z3ω)
+¯¯¯¯¯z2(z3ω+z1ω2)+¯¯¯¯¯z3(z2ω2+z2ω) ...(3)
adding (1),(2) and (3), we get
A¯¯¯¯A+B¯¯¯¯B+C¯¯¯¯C=3[|z1|2+|z2|2+|z3|2]
+¯¯¯¯¯z1[z2(1+ω+ω2)+z3(1+ω2+ω)]
+¯¯¯¯¯z2[z3(1+ω+ω2)+z1(1+ω+ω2)]
+¯¯¯¯¯z3[z2(1+ω+ω2)+z2(1+ω2+ω)]
=3[|z1|2+|z2|2+|z3|2][∵1+ω+ω2=0]
∴ From (1) and (2), we conclude
|A|2+|B|2+|C|2=3[|z1|2+|z2|2+|z3|2].