The correct option is
C minimum value of
|z| is
√8−1|z−2+2i|=1
⇒|z−(2−2i)|=1
∵||z1|−|z2||≤|z1−z2|≤|z1|+|z2|
⇒||z|−√8|≤1≤|z|+√8
||z|−√8|≤1 and
1≤|z|+√8
⇒−1≤|z|−√8≤1 and
|z|≥−√8+1
⇒√8−1≤|z|≤√8+1 and
|z|≥0
∴|z|∈[√8−1,√8+1]
So, minimum value of
|z| is
√8−1
and maximum value of
|z| is
√8+1
Alternate solution :
|z−(2−2i)|=1
Let,
z=x+iy
⇒(x−2)2+(y+2)2=1
It represents a circle with centre
(2,−2) and radius
1 unit
|z|=|z−0|= distance of point
P(z) from origin
∴(OP)min=OC−r=√8−1
and
(OP)max=OC+r=√8+1