If |z - 5i| = |z + 5i|, then find the locus of z.
Let, z = x + iy
Given that : ∣∣z−5iz+5i∣∣=∣∣x+iy−5ix+iy+5i∣∣
⇒ ∣∣z−5iz+5i∣∣=∣∣x+i(y−5)x+i(y+5)∣∣ [∵ ∣∣z−5iz+5i∣∣=1]⇒ ∣∣z−5iz+5i∣∣=√x2+(y−5)2√x2+(y+5)2
On squaring both sides, we get
x2+(y−5)2=x2+(y+5)2⇒ −10y=+10y⇒ 20y=0∴ y=0
So, z lies on real axis.