The correct option is B Re(z)=−4
Taking eiA,eiB,eiC out of the determinant,
z=eiA⋅eiB⋅eiC∣∣
∣
∣∣eiAe−i(C+A)e−i(B+A)e−i(C+B)eiBe−i(A+B)e−i(B+C)e−i(A+C)eiC∣∣
∣
∣∣
We know that
A+B+C=π
So,
⇒z=ei(A+B+C)∣∣
∣
∣∣eiAe−i(π−B)e−i(π−C)e−i(π−A)eiBe−i(π−C)e−i(π−A)e−i(π−B)eiC∣∣
∣
∣∣
Now,
e−i(π−A)=cos(A−π)+isin(A−π) =−cosA−isinA=−eiA
ei(A+B+C)=eiπ=−1
⇒z=(−1)∣∣
∣
∣∣eiA−eiB−eiC−eiAeiB−eiC−eiA−eiBeiC∣∣
∣
∣∣
Using row operations,
R3→R3+R2
⇒Z=(−1)∣∣
∣
∣∣eiA−eiB−eiC−eiAeiB−eiC−2eiA00∣∣
∣
∣∣
⇒z=(−1)[−2eiA(2ei(B+C))]⇒z=4ei(A+B+C)=−4