If z=−21+i√3, then the value of arg(z) is
π
π3
2π3
π4
z=−21+i√3Rationalising z, we get,z=−21+i√3×1−i√31−i√3⇒ z=−2+i2√31+3⇒ z=−1+i√32⇒ z=−12+i√32tan α =∣∣Im(z)Re(z)∣∣=√3⇒ α=π3
Since, z lies in the second quadrant.
Therefore, arg (z) = π−π3=2π3
The principle argument of the complex number −1−√3i is
If -1+√−3=reiθ, then θ is equal to