The correct options are
A C0−C1+C2−C3+.....+C16=1
B C0+C3+C6+C9+C12+C15=37
D C1+C4+C7+C10+C13+C16=37
(1+z2+z4)8=C0+C1z2+C2z4+⋯+C16z32⋯(1)
Putting z=i
(1)8=C0−C1+C2−C3+C4−⋯+C16
⇒C0−C1+C2−C3+C4−⋯+C16=1
Putting z=w,
(1+w2+w4)8=C0+C1w2+C2w4+⋯+C16w32
⇒C0+C1w2+C2w+C3+⋯+C16w2=0⋯(2)
Putting x=w2,
(1+w4+w8)8=C0+C1w4+C2w8+⋯+C16w64
⇒C0+C1w+C2w2+⋯+C16w=0⋯(3)
Putting x=1,
38=C0+C1+C2+C3+...+C16⋯(4)
Adding (2),(3),(4), we have
⇒C0+C3+C6+...+C15=37 [∵1+ω+ω2=0]
Similarly, first multiplying (1) by z and then putting 1,w,w2 and adding, we get
C1+C4+C7+C10+C13+C16=37
Multiplying (1) by z2 and then putting 1,w,w2 and adding, we get
C2+C5+C8+C11+C14=37