If z lies on the curve |z| = 1 such that a ≤ |z+1| + |1 + z2 - z| ≤ b then (a,b) can be
Let x = |z+1|
x = |z+1| ≤|z|+1=2⇒x∈[0,2]
x2=|z+1|2=(z+1)(¯¯¯z+1)
= 2 + z + ¯¯¯z ⇒z+¯¯¯z=x2−2
now |1+z2−z|=|z¯¯¯z+z2−z|=|¯¯¯z+z−1|
= |x2−2−1|=|x2−3|=3−x2
f(x) = |z+1| + |1+z2−z| = −x2+x+3
fmax(x)=4.(−1).3−14(−1)=134atx=12
fmin(x)=f(2)=1
Checking for extreme values gives required range of f(x) as [1,134].