We have,
y=⎛⎜⎝sin xcos xsin xcos x−sin xcos xx11∣∣
∣∣ Differentiating both sides w.r.t. x, we get⇒dydx=⎛⎜⎝cos x−sin xcos xcos x−sin xcos xx11∣∣
∣∣+⎛⎜⎝sin xcos xsin x−sin x−cos x−sin xx11∣∣
∣∣+⎛⎜⎝sin xcos xsin xcos x−sin xcos x100∣∣
∣∣⇒dydx=0−⎛⎜⎝sin xcos xsin xsin xcos xsin xx11∣∣
∣∣+1(cos2 x +sin2 x)⇒dydx=0+1=1