Question 99(iii)
Find the value of x, so that: (2−1+4−1+6−1+8−1)x=1
we have (2−1+4−1+6−1+8−1)x=1 Using law of exponents a−m=1am Then (12+14+16+18)x=1⇒(12+6+4+324)x=1⇒(2524)x=1 this can be possible only if x=0, Sincea0=1
Prove that: tan−1(√1+x−√1−x√1+x+√1−x)=π4−12cos−1x;−1√2≤x≤1.
OR If tan−1(x−2x−4)+tan−1(x+2x+4)=π4, find the value of x.
Find the value of x. 1)(x3)+(14)=(x2)−(25) 2)0.25(3x−1)=0.05(8x−6) [4 MARKS]