In a ∆ABC,
Given a4 + b4 + c4 = 2a2b2 + 2b2c2
i.e a4 + b4 − 2a2b2 + c2 − 2b2c2 = 0
i.e (a2 + c2)2 + b4 − 2a2b2 − 2b2c2 − 2a2c2 = 0
i.e (a2 + c2)2 + b4 − 2b2 (a2 + c2) − 2a2c2 = 0
i.e (a2 + c2 − b2)2 = 2a2c2
i.e a2 + c2 − b2 =
Using cosine formula,
i.e cosB =
cosB =
i.e