wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In a ∆ABC, if a4 + b4 + c4 = 2a2b2 + 2b2c2, then B = __________.

Open in App
Solution

In a ∆ABC,
Given a4 + b4 + c4 = 2a2b2 + 2b2c2
i.e a4 + b4 − 2a2b2 + c2 − 2b2c2 = 0
i.e (a2 + c2)2 + b4 − 2a2b2 − 2b2c2 − 2a2c2 = 0
i.e (a2 + c2)2 + b4 − 2b2 (a2 + c2) − 2a2c2 = 0
i.e (a2 + c2 − b2)2 = 2a2c2
i.e a2 + c2 − b2 = 2 ac
Using cosine formula,
i.e cosB = a2+c2-b22ac=2ac2ac
cosB = 12
i.e B=π4 or π-π4=3π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Structure, Nomenclature and Properties
CHEMISTRY
Watch in App
Join BYJU'S Learning Program
CrossIcon