In a ΔABC, if a=√2,b=2,c=√3+1, then ∠A=
Given that, a=√2,b=2 and c=√3+1
Find the value of ∠A=?
We know that
cosA=b2+c2−a22bc
cosA=22+(√3+1)2−(√2)22×2×(√3+1)
=4+(√3)2+12+2√3−24(√3+1)
=6+2√34(√3+1)
=2√3(√3+1)4(√3+1)
=√32
cosA=cos300
∠A=300
Hence, it is complete solution.
Option (B) is correct.