In a ΔABC, if sin2 A+sin2 B=sin2, C show that the triangle is right angled.
Let sin A=ak, sin B=bk, sin C=cksin2 A+sin2 B=sin2 C⇒ k2a2+k2b2=k2c2 [Using sine rule]⇒ a2+b2=c2Since the triangle satisfies the Pythagoras theoram, therefore it is right angled.