In a ΔABC, if (√3−1)a=2b,A=3B, then C is
The correct option is D: 120∘
∵(√3−1)a=2b
⇒ab=2√3−1
Applying sine Rule, we get asin A=bsin B=csin C
∴ab=sin Asin B
sin~Asin~B=2√3−1=2√3−1×√3+1√3+1=√3+1
Given, A=3B
∴sin 3Bsin B=√3+1
⇒3sinB−4sin3Bsin B=√3+1
⇒3−4sin2B=√3+1
⇒3−√3−1=4sin2B
⇒2−√34=sin2B
⇒(√3−12√2)2=sin2 B
⇒sin B=√3−12√2
Since, sin15∘=√3−12√2
⇒B=15∘
and A=3B=3×15∘=45∘
∴C=180∘−A−B=180∘−60∘=120∘