In a \Delta ABC, prove that:
(i)cos (A+B)+cos C =0
(ii)cos(A+B2)=sinC2
(iii)tanA+B2=cotC2
(i)We have A+B+C =π[∵ sum of 3 angles of a triangle is π=180∘]
⇒A+B=π−C
⇒cos(A+B)=cos(π−C)⇒=−cosC[∵(π−θ)=−cosθ]
⇒cos(A+B)+cosC=0 Hence proved.
(ii)We have A+B+C =π[∵ sum of 3 angles of a triangle is π=180∘]
⇒A+B=π−C
⇒A+B2=π−C2
⇒A+B2=π2−C2
⇒cos=(A+B2)=cos(π2−C2)
⇒sinC2
[∵cos(π2−θ)=sinθ]
Hence cos(A+B2)=sinC2 Proved.
(iii)We have A+B+C=π[∵ sum of 3 angles of a triangle is π=180∘]
⇒A+B=π−C
⇒A+B2=π−C2
⇒A+B2=π2−C2
⇒tan=(A+B2)=tan(π2−C2)
⇒cotC2
[∵tan(π2−θ)=cotθ]
Hence tan(A+B2)=cotC2 Hence proved.