1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VI
Mathematics
Quadrilaterals
In a quadrila...
Question
In a quadrilateral
A
B
C
D
∠
B
=
90
∘
A
D
2
=
A
B
2
+
B
C
2
+
C
D
2
then prove that
∠
A
C
D
=
90
∘
.
Open in App
Solution
I
n
t
h
e
q
u
a
d
r
i
l
a
t
e
r
a
l
A
B
C
D
∠
A
B
C
=
90
∘
H
e
n
c
e
,
A
B
2
+
B
C
2
=
A
C
2
−
−
−
−
(
1
)
B
y
u
sin
g
p
y
t
h
a
g
o
r
a
s
t
h
e
r
o
e
m
N
o
w
,
A
D
2
=
(
A
B
2
+
B
C
2
)
+
C
D
2
(
g
i
v
e
n
)
=
A
C
2
+
C
D
2
−
−
−
(
2
)
I
n
t
h
e
t
r
i
a
n
g
l
e
A
C
D
,
A
D
h
a
s
t
o
b
e
a
h
y
p
o
t
e
n
u
s
e
a
n
d
∠
A
C
D
=
90
∘
b
y
p
y
t
h
a
g
o
r
a
s
t
h
e
o
r
e
m
p
r
o
v
e
d
Suggest Corrections
0
Similar questions
Q.
In a quadrilateral
A
B
C
D
,
∠
B
=
90
,
A
D
2
=
A
B
2
+
B
C
2
+
C
D
2
, prove that
∠
A
C
D
=
90
0
Q.
In a quadrilateral
A
B
C
D
∠
B
=
90
o
.If
A
D
2
=
A
B
2
+
B
C
2
+
C
D
2
, prove that
∠
A
C
D
=
90
o
.
Q.
In the quadrilateral
A
B
C
D
,
∠
A
B
C
=
90
o
and
A
D
2
=
(
A
B
2
+
B
C
2
+
C
D
2
)
. Prove that :
∠
A
C
D
=
90
o
Q.
In a quadrilateral ABCD
∠
B
=
90
∘
a
n
d
A
D
2
=
A
B
2
+
B
C
2
+
C
D
2
.
t
h
e
n
∠
A
C
D
i
s
Q.
In a quadrilateral ABCD, given that ∠A + ∠D = 90°. Prove that AC
2
+ BD
2
= AD
2
+ BC
2
.