In a △ABC, If A−B=120o and sin(A2)sin(B2)sin(C2)=132, then the value of 8cosC is
A
7
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
9
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A7 sinA2sinB2sinC2=132(2sinA2sinB2)sinC2=232∣∣
∣
∣∣A+B+C=180∘A+B=180∘−CA+B2=90∘−C2(cosA_B2−cosA+B2)sinC2=232[cos60∘−cos(A−B2)]sinC2=116[12−cos(90∘−C2)]sinC2=116sinC2(12−sinC2)=11612sinC2−sin2C2=116sin2C2−12−sin2C2=116sin2C2−12sinC2+(14)2=0(sinC2−14)=0⇒sinC2=14cosC=1−2sin2C2=1−2(116)=1−18=78∴8cosC=7