The correct option is C Equilateral
cosA+cosB+cosC=32⇒2cos(A+B2)cos(A−B2)+1−2sin2C2=32⇒2sin2C2−2sinC2cos(A−B2)+12=0
As sinC2∈R
Δ≥0 (Δ is discriminant of quadratic)
⇒4cos2(A−B2)−4≥0⇒cos2(A−B2)≥1
cos(A−B2)≥1 or,
cos(A−B2)≤−1
So the only possible solution will occur when,
cos(A−B2)=1⇒A=B
Therefore the solution of the quadratic equation will be,
2sin2C2−2sinC2+12=0⇒(sinC2−12)2=0⇒C2=π6⇒C=π3
Hence the triangle will be equilateral.