In a triangle ABC, sinAcosB=14 and 3tanA=tanB , the triangle is
A
a right angled
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
an equilateral
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
an isosceles
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A a right angled We have, 3tanA=tanB ...(1) ⇒3cosBsinB=cosAsinA ⇒3(a2+c2−b22ac)1b=(b2+c2−a22bc)1a ..{ Using Sine and Cosine rule} ⇒a2+c22=b2 ...(2) Given that: sinAcosB=14 ⇒sinA(a2+c2−b22ac)=14 ...{ cosine rule } ⇒sinA⎛⎜
⎜
⎜⎝c2−c222ac⎞⎟
⎟
⎟⎠=14 ...{ From (2)} ⇒asinA=c1=csinπ2 ∴C=π2{Sinerule:asinA=csinC} ∴△ABC is right angled triangle. Ans: A