$ \mathrm{In} ∆\mathrm{ABC}, \mathrm{AB}=\mathrm{AC} \mathrm{and} \mathrm{AP}=\mathrm{AQ}.$ Prove that $ \mathrm{CP}=\mathrm{BQ}$.
Prove the required condition:
Given:
Now in and
(Common angles)
(Common side)
Hence (by SAS congruency)
Hence (corresponding sides of congruence triangles)
Hence, proved that .