In △ABC, if (a−b)2cos2C2+(a+b)2sin2C2=mc2. The value of m is
Open in App
Solution
(a−b)2cos2C2+(a+b)2sin2C2 =a2+b2+2ab(sin2C2−cos2C2) =a2+b2+2ab(2sin2C2−1)⋯(i)
We know, sinC2=√(s−a)(s−b)ab=√(c+b−a)(c+a−b)4ab
put in equation (i) a2+b2+2ab(2((c+b−a)(c+a−b)4ab)−1) =a2+b2+2ab((c+b−a)(c+a−b)2ab−1) =a2+b2+c2−(b−a)2−2ab =c2 ∴m=1