We have,
In an A.P.
Sixth term=fourthterm2
Let the first term =a
Common difference=d
Then,
T6=T42
a+5d=a+3d2[∴an=a+(n−1)d]
⇒2a+10d=a+3d
⇒2a−a=3d−10d
⇒a=−7d
Now, According to given question,
Third term = 15
a+2d=15
⇒−7d+2d=15
⇒−5d=15
⇒d=−3
So,
a=21
Now,
Sum of n terms=66
n2[2a+(n−1)d]=66(∴Sn=n2(2a+(n−1)d))
⇒n2[2×21+(n−1)(−3)]=66
⇒n2[42−3n+3]=66
⇒n2[45−3n]=66
⇒3n2[15−n]=66
⇒n2(15−n)=22
⇒n(15−n)=44
⇒15n−n2=44
⇒n2−15n+44=0
⇒n2−(11+4)n+44=0
⇒n2−11n−4n+44=0
⇒n(n−11)−4(n−11)=0
⇒(n−11)(n−4)=0
If, n−4=0,n=4
If, n−11=0,n=11
So, after 4th term the sum of all terms will be zero
Hence, this is the answer.