wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In an A.P
i) Given a=2,d=8,Sn=90, Find n & a9
ii) Given a=7,a13=35, Find d & S13.

Open in App
Solution

i) Given a=2, d=8, Sn=90
Sum of n terms of an A. P is given by:
Sn=n2(2a+(n1)d)
Sn=na+n2(n1)d
90=2n+n2(n1)8
4n(n1)+2n=90
4n24n+2n=90
4n22n90=0
solving above quadratic we get:
n=2±4+14408
n=2±14448=2±388
n=408=5 or n=368
Since, number of terms (n) can not be negative.
Hence, n=5
The nth term of an A.P is given by:
an=a+(n1)d
a9=2+(91)8
a9=2+8×8
a9=2+64
Hence,
a9=66

ii) Given a=7, a13=35
The nth term of an A.P is given by:
an=a+(n1)d
a13=a+(131)d
35=7+12d
d=35712=2812
Hence,
d=73
Sum of n terms of an A. P is given by:
Sn=n2(2a+(n1)d)
S13=132(2×7+(131)×73)
S13=132(14+12×73)
S13=132(14+28)
S13=132(42)
Hence,
S13=273


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon