The correct option is
B False
1) Refer to the figure. O is the midpoint of side
BC and
segAD⊥segBC
2) Consider right angled △ADB. By Pythagoras theorem,
AB2=AD2+DB2 (1)
Similarly, in right angled △ADC, by Pythagoras theorem,
AC2=AD2+DC2 (2)
Adding equation (1) and (2), we get,
AB2+AC2=AD2+DB2+AD2+DC2
∴AB2+AC2=2AD2+DB2+DC2
From the figure, it is evident that,
BD=BO+OD and CD=CO−OD
∴AB2+AC2=2AD2+(BO+OD)2+(CO−OD)2
∴AB2+AC2=2AD2+BO2+2BO.OD+OD2+CO2+2CO.OD+OD2
But, BO=CO (GIven)
∴AB2+AC2=2AD2+BO2+2BO.OD+OD2+BO2−2BO.OD+OD2
∴AB2+AC2=2AD2+2BO2+2OD2
∴AB2+AC2=2(AD2+BO2+OD2) (3)
Now, refer to the figure. In right angled △AOD by Pythagoras theorem,
AD2+OD2=AO2
Thus, from (3),
∴AB2+AC2=2(AO2+BO2)
∴AB2+AC2=2(AO2+OC2)