wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ΔABC,ABC=135

Prove that:
AC2=AB2+ BC2 + 4(ΔABC)

Open in App
Solution

Lets draw altitude from A to BC such that it meets BC at D, angles are ΔADC,D=90o
AD2+DC2=AC2
AD2+(BD+BC)2=AC2
AD2+BD2+BC2+2BD.BC=AC2 ………….(1)

In ΔADB,D=90o

AD2+BD2=AB2

Substituting in equation (1)
AD2+BD2+BC2+2BD.BC=AC2
AB2+BC2+2BD.BC=AC2

as in ΔADB,DAB=45o

AD=DB(opposite sides are equal)

AB2+BC2+2BD×BC=AC2

AB2+BC2+2AD×BC=AC2

AB2+BC2+4[12AD×BC]=AC2

AB2+BC2+4(ΔABC)=AC2

Hence proved.

1230572_1468263_ans_647c49d2feb34251915dcabcadbac27a.PNG

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Classification of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon