1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VII
Mathematics
Classification of Triangles Based on Angles
In Δ ABC,∠ ...
Question
In
Δ
A
B
C
,
∠
A
B
C
=
135
∘
Prove that:
A
C
2
=
A
B
2
+
B
C
2
+
4
(
Δ
A
B
C
)
Open in App
Solution
Lets draw altitude from A to BC such that it meets BC at D, angles are
Δ
A
D
C
,
∠
D
=
90
o
⇒
A
D
2
+
D
C
2
=
A
C
2
⇒
A
D
2
+
(
B
D
+
B
C
)
2
=
A
C
2
⇒
A
D
2
+
B
D
2
+
B
C
2
+
2
B
D
.
B
C
=
A
C
2
………….
(
1
)
In
Δ
A
D
B
,
∠
D
=
90
o
⇒
A
D
2
+
B
D
2
=
A
B
2
Substituting in equation
(
1
)
⇒
A
D
2
+
B
D
2
+
B
C
2
+
2
B
D
.
B
C
=
A
C
2
⇒
A
B
2
+
B
C
2
+
2
B
D
.
B
C
=
A
C
2
as in
Δ
A
D
B
,
∠
D
A
B
=
∠
45
o
⇒
A
D
=
D
B
(opposite sides are equal)
⇒
A
B
2
+
B
C
2
+
2
B
D
×
B
C
=
A
C
2
⇒
A
B
2
+
B
C
2
+
2
A
D
×
B
C
=
A
C
2
⇒
A
B
2
+
B
C
2
+
4
[
1
2
A
D
×
B
C
]
=
A
C
2
⇒
A
B
2
+
B
C
2
+
4
(
Δ
A
B
C
)
=
A
C
2
∴
Hence proved.
Suggest Corrections
1
Similar questions
Q.
In ∆ABC, ∠ABC = 135°. Prove that AC
2
= AB
2
+ BC
2
+ 4 ar (∆ABC)